Subclinical chlamydial infection of the female mouse genital tract generates a potent protective immune response: implications for development of live attenuated chlamydial vaccine strains.
نویسندگان
چکیده
Chlamydia trachomatis is a major cause of sexually transmitted disease (STD) for which a vaccine is needed. CD4(+) T-helper type 1 (Th1) cell-mediated immunity is an important component of protective immunity against murine chlamydial genital infection. Conventional vaccine approaches have not proven effective in eliciting chlamydial-specific CD4 Th1 immunity at the genital mucosa. Thus, it is possible that the development of a highly efficacious vaccine against genital infection will depend on the generation of a live attenuated C. trachomatis vaccine. Attenuated strains of C. trachomatis do not exist, so their potential utility as vaccines cannot be tested in animal models of infection. We have developed a surrogate model to study the effect of chlamydial attenuation on infection and immunity of the female genital tract by treating mice with a subchlamydiacidal concentration of oxytetracycline following vaginal infection. Compared to untreated control mice, antibiotic-treated mice shed significantly fewer infectious organisms (3 log(10)) from the cervico-vagina, produced a minimal inflammatory response in urogenital tissue, and did not experience infection-related sequelae. Antibiotic-treated mice generated levels of chlamydia-specific antibody and cell-mediated immunity equivalent to those of control mice. Importantly, antibiotic-treated mice were found to be as immune as control untreated mice when rechallenged vaginally. These findings demonstrate that subclinical chlamydial infection of the murine female genital tract is sufficient to stimulate a potent protective immune response. They also present indirect evidence supporting the possible use of live attenuated chlamydial organisms in the development of vaccines against chlamydial STDs.
منابع مشابه
Rectal administration of a chlamydial subunit vaccine protects against genital infection and upper reproductive tract pathology in mice
In this study, we tested the hypothesis that rectal immunization with a VCG-based chlamydial vaccine would cross-protect mice against heterologous genital Chlamydia trachomatis infection and Chlamydia-induced upper genital tract pathologies in mice. Female mice were immunized with a C. trachomatis serovar D-derived subunit vaccine or control or live serovar D elementary bodies (EBs) and the ant...
متن کاملMurine Chlamydia trachomatis genital infection is unaltered by depletion of CD4+ T cells and diminished adaptive immunity.
Chlamydia muridarum and Chlamydia trachomatis mouse models of genital infection have been used to study chlamydial immunity and vaccine development. To assess the protective role of CD4(+) T cells in resolving C. trachomatis and C. muridarum genital tract infections, we used the female mouse model and evaluated infection in the presence and absence of CD4(+) T cells. In contrast to C. muridarum...
متن کاملVaccination against Chlamydial Genital Tract Infection after Immunization with Dendritic Cells Pulsed Ex Vivo with Nonviable Chlamydiae
Chlamydia trachomatis, an obligate intracellular bacterial pathogen of mucosal surfaces, is a major cause of preventable blindness and sexually transmitted diseases for which vaccines are badly needed. Despite considerable effort, antichlamydial vaccines have proven to be elusive using conventional immunization strategies. We report the use of murine bone marrow-derived dendritic cells (DC) pul...
متن کاملThe effect of doxycycline treatment on the development of protective immunity in a murine model of chlamydial genital infection.
Chlamydia trachomatis is a major cause of sexually transmitted disease (STD) worldwide. Antibiotics are effective in treating infection; however, reinfection is common. This observation has led to the conclusion that infection fails to elicit a protective antichlamydial immune response. It was postulated that high reinfection rates might be due to early eradication of organisms from genital tis...
متن کاملA Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant
Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a vaccine. A major impediment is identifying a safe and effective ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2000